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Inference for a Progressively First-Failure 
Censored Competing Risks Data from the 

Kumaraswamy Distribution 
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Abstract— In medical studies or in reliability analysis, it is quite common that the failure of any individual or any item may be attributable to 
more than one cause. Moreover, the observed data are progressively first-failure censored competing risks data, when the lifetime 
distributions are Kumaraswamy. This type of censoring contains as special cases various types of censoring schemes used in the literature. 
Based on this type of censoring, we derive the maximum likelihood estimators (MLE) of the unknown parameters and asymptotic confidence 
intervals  It is assumed that the latent cause of failures have independent Kumaraswamy distributions with the common shape parameter ,

but different shape parameters 1 and 2  When the common shape parameter is known, the Bayes estimates of the another shape 

parameters have closed form expressions and the corresponding credible intervals also can be constructed explicitly. As expected, when 
the common shape parameter is unknown the explicit expressions of the Bayes estimators cannot be obtained. Hence, we propose Markov 
chain Monte Carlo (MCMC) method to compute the Bayes estimates and construct the credible intervals of the unknown parameters. One 
set of real data has been analyzed for illustrative purposes. Finally, we provide a Monte Carlo simulation to compare and select optimal 
censoring schemes. 

 

Index Terms— Kumaraswamy distribution; Progressive first-failure-censoring; Competing risks; Maximum likelihood method; MCMC 

method; credible intervals.   

——————————      —————————— 

1 INTRODUCTION                                                                     

n reliability, medical or biological studies it is quite common 
that more than one cause of failure may be present at the 
same time. An investigator is often interested in the 

assessment of a specific cause in the presence of other causes . 
In the statistical literature this problem is known as the 
competing risks model. A lifetime experiment with 2   
different risk factors competing for the failure of the 
experimental units is considered. The data for such a 
competing risks model consist of the lifetime of the failed item 
and an indicator variable which denotes the cause of failure. 
In analyzing the competing risks model, it is assumed that 
data consist of a failure time and an indicator denoting the 
cause of failure. Severals studies have been carried out under 
this assumption for both the parametric and the non-
parametric setups, namely the exponential, lognormal, 
gamma, Weibull, generalized exponential or exponentiated 
Weibull; see for example [1], [2] , [3] , [4] , [5] ,[6] and [7]. 
Recently, the competing risks model has received considerable 
interest among the statisticians. See for example, [8] and [9]. 
 E-mail: a_a_mod@yahoo.com Censoring occurs when exact lifetimes 
are known only for a portion of the individuals or units under 
study, while for the remainder of the lifetimes information on 
them is partial. There are several types of censored tests. The 

most common censoring schemes are Type-I (time) censoring, 
where the life testing experiment will be terminated at a 
prescribed time T, and Type-II (failure) censoring, where the 
life testing experiment will be terminated upon the r -th ( r  is 
pre-fixed) failure. However, the conventional Type-I and 
Type-II censoring schemes do not have the flexibility of 
allowing removal of units at points other than the terminal 
point of the experiment, also when the lifetimes of products 
are very high, the experimental time of a Type II censoring life 
test can be still too long. Because of these lack of flexibilities, 
Johnson [10]  described a life test in which the experimenter 
might decide to group the test units into several sets, each as 
an assembly of test units, and then run all the test units 
simultaneously until occurrence the first failure in each group. 
Such a censoring scheme is called first-failure censoring. If an 
experimenter desires to remove some sets of test units before 
observing the first-failures in these sets this life test plan is 
called a progressive first-failure-censoring scheme which 
recently introduced by [11]. Readers may refer to [12], [13], 
[14], [15] and [16] for extensive reviews of the literature on 
progressive censoring. 
The main aim of this paper is to develop a confidence interval 
and the MLE for the Kumaraswamy distribution based on the 
progressively first-failure-censored sample in the presence of 
competing risks. Therefore, the organization of the paper is as 
follows. In Section 2, we introduce the model and present the 
notation used throughout this paper. The maximum 
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likelihood estimates of the unknown parameters are 
discussed, we also present the asymptotic confidence intervals 
in Section 3. In Section 4, firstly, we discussed Bayes 
estimation of the unknown parameters when the common 
shape parameter   is known and construction of credible 

intervals. Secondly the Bayes estimation of the unknown 
parameters when the common shape parameter   is 

unknown and construction of credible intervals using MCMC 
method. A real data set from [17] is analyzed in Section 5. In 
section 6, the different methods are compared using Monte 
Carlo simulations. Some concluding remarks are finally made 
in Section 7. 

2 MODEL ASSUMPTIONS AND NOTATION 

Before proceeding any further, we describe different 
notations we are going to use in this paper. 

 iX  lifetime of the i -th unit.  

 ijX  lifetime of the i -th individual under cause j , 1,2j   .  

 (.)F  cumulative distribution function (cdf) of  iX  .  

 f(.)  probability density function (pdf) of (.)F  .  

 (.)jF  cdf of  ijX  .  

 (.)jf  pdf of (.)jF  .  

 (.)jS  survival function of ijX  .  

 (.)i  indicator variable denoting the cause of failure of the i -th 

individual.  

.  

The model studied in the paper satisfies the following a 
sumptions 

i) When n  independent groups with k items within each 

group are put on a life test, 1R groups and the group in 

which the first failure is observed are randomly removed 

from the test as soon as the first failure (say  1 : : :m n kX R   

and  1 {1,2}   ) has occurred,  2R  groups and the group 

in which the second first failure is observed are randomly 
removed from the test when the second failure (say  

2 : : :m n kX R   and  2 {1,2}   ) has occurred, and finally  

( )mR m n groups and the group in which the  m -th first 

failure is observed are randomly removed from the test as 

soon as the  m -th  failure (say  : : :m m n kX R   and  

{1,2}m   ) has occurred. The  1 : : : 1( , )m n kX  R    

2 : : : 2( , ) ...m n kX   R    : : :( , )m m n k mX R  are called 

progressively first-failure-censored competing risks order 
statistics with the progressive censoring scheme  

1 2( , ,..., )mR R RR    and for each i , i  takes a value either 

1 and 2 the causes of failures. It is clear that  

1 2 ... mn m R R R     . To simplify the notation we will 

use henceforth 
iX instead of : : :i m n kX , 1,2 ...i m   . 

ii) The lifetime of unit is denoted as  iX , 1,2 ...i m   . The 

time at which the unit  i  fails due to cause j is  
ijX , 

1,2j   . That is,  1 2min{ , }i i iX X X . 

iii) The distribution of the random variable ijX  is 

Kumaraswamy distribution with shape parameters   and 

j , 1,2j    and  1,2 ...i m   . That is, the (pdf) and (cdf) 

of ijX , 1,2j  , for each  1,2 ...i m   , are 

( 1)1( ) (1 ) ,  0 1, ( 0,  0),j

j j jf x x x x
   

                          (1) 

( ) 1 (1 ) ,  0 1.j

jF x x x
                                                              (2) 

The corresponding reliability and failure rate functions of this 

distribution at some t , are given, respectively by 

( ) (1 ) ,  0 1,j

jS t t t
                                                       (3)    

and 
1 1( ) (1 ) ,  0 1.j jH t t t t                                                 (4) 

iv) The two-parameters Kumaraswamy distribution is 
unimodal for 1   and 1  , uniantimodal for 1   and 

1  , increasing for 1   and 1  , decreasing for 1   

and 1   and constant for 1   . Jones [18] investigated 

properties of the Kumaraswamy distribution and also 
some similarities differences between the beta and 
Kumaraswamy distributions. The Kumaraswamy 
distribution is applicable to a number of hydrological 
problems and many natural phenomena whose process 
values are bounded on both sides. In hydrology and 
related areas, the Kumaraswamy distribution has received 
considerable interest, see Cordeiro et al. (2010, 2012). 

Based on the above assumptions, the available data is a 
progressively first-failure-censored competing risks sample 
which contains the following: ( 1 : : : 1 1, ,m n kX R ), 

2 : : : 2 2 : : :( , , ), ,( , , )m n k m m n k m mX R X R  , where  

1 : : : 2 : : : : : :m n k m n k m m n kX X X     denote the  m   

observed failure times, 1 , 2 , , m  denote the causes of 

failures, and 1R ,  2R , , mR denote the number of groups 

removed from the test at the failure times  

1 : : : 2 : : : : : :m n k m n k m m n kX X X   . If the failure 

times of the n k items originally in the test are from a 
continuous population with (cdf) ( )F x and (pdf) ( )f x , the 

joint probability density function for 
1 : : : ,m n kX R  

2 : : : ,...,m n kX R  
: : :m m n kX R  is given by [11]. 

3 ESTIMATION OF THE PARAMETERS 

In this section, we first estimate the parameters  and ,j    
1,2j   by considering the maximum likelihood (ML) 

methods, and then we compute the observed Fisher 
information based on the likelihood equations. These will 
enable us to develop pivotal quantities based on the limiting 
normal distribution, the resulting pivotal quantities can be 
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used to develop approximate confidence interval for the 
parameters. 
3.1 Maximum Likelihood Estimation 

Based on the observed sample (
1 : : : 1 1, ,m n kX R ), 

2 : : : 2 2( , , )m n kX R , , ( : : : , ,m m n k m mX R  ), the likelihood 
function is; 

1 2

1

1 2 1 2

1

1 2

1

( ; , , )
(1 )

exp[ ( ) ( 1) log(1 )].

m
m mm i

i i

m

i i

i

x
x

x

k R x







     

 










   




          (5) 

The log-likelihood function without the additive constant 
can be written as follows; 

1 2 1 1 2 2

1

1 2

1 1

( ; , , ) log log log ( 1) log( )

log(1 ) ( ) ( 1)log(1 ).

m

i

i

m m

i i i

i i

L x m m m x

x k R x 

      

 



 

    

     



 
      (6) 

Upon differentiating (6) with respect to 
1,  and 

2 , and 
equating each result to zero, three equations must be 
simultaneously satisfied to obtain MLEs of the parameters 

1,   and 2.  Then, we have 

1 2

1 1

1 2

1

( ; , , ) log( )
log( )

(1 )

( 1) log( )
( ) 0,

(1 )

m m

i i
i

ii i

m

i i i

ii

L x m x x
x

x

k R x x

x









  

 

 

 




  

 


  



 


             (7) 

1 2 1

1 1 1

( ; , , )
( 1)log(1 ) 0,

m

i i

i

L x m
k R x   

 



    

                     (8)  

and 

1 2 2

2 2 1

( ; , , )
( 1)log(1 ) 0.

m

i i

i

L x m
k R x   

 



    

                (9) 

Thus, the MLE ̂ , 1̂  and 2̂  of the parameter  , 1   and  

2   can be obtained by solving the nonlinear likelihood Eqs.  
(7-9)  using, for example, the Newton-Raphson iteration 
scheme. 

Notice that both  1m   and  2m   follow binomial 
distributions with sample size m . Hence,  

3 1 2( , / ( )),j im Bin m      1,2j   . 
3.2 Approximate interval estimation 

The asymptotic normal distribution for the MLEs can be 
obtained in the usual way. From the log-likelihood function in 
(6), we have 

2 2
1 2

2 2 2

2

1 2 2

1

( , , ) log ( )

(1 )

( 1) log ( )
( ) ,

(1 )

i i

i

m

i i i

ii

L m x x

x

R x x
k

x









  

 

 




  

 


 




                   (10) 

 

2 2
1 2 1 2

2
1 1 1

( , , ) ( , , ) ( 1) log( )
,

(1 )

m

i i i

ii

L L R x x
k

x





     

   


  
  

    
      (11) 

 
2 2

1 2 1 2
2

2 2 1

( , , ) ( , , ) ( 1) log( )
,

(1 )

m

i i i

ii

L L R x x
k

x





     

   


  
  

    
       (12) 

 
2 2

1 2 1 2

1 2 2 1

( , , ) ( , , )
0,

L L     

   

 
 

   
                           (13) 

 
2

1 2 1
2 2

1 1

( , , )
,

L m  

 


 


                                                  (14) 

and 
2

1 2 2
2 2
2 2

( , , )
.

L m  

 


 


                                                   (15) 

The Fisher information matrix  1 2( , , )I      is then obtained 
by taking expectations of minus Eqs. (10-15). Under some mild 
regularity conditions, 

1 2
ˆ ˆˆ( , , )    is approximately bivariately 

normal with mean 1 2( , , )    and covariance matrix 
1

1 2( , , )I    . In practice, we usually estimate 1
1 2( , , )I     by 

1
1 2
ˆ ˆˆ( , , )I    . A simpler and equally valid procedure is to use 

the approximation 

 1
1 2 1 2 0 1 2
ˆ ˆ ˆ ˆˆ ˆ( ,  ,  ) ( , , ), ( , , ) ,N I          wher 

1
0 1 2

ˆ ˆˆ( , , )I   
  

is the observed information matrix 

 
Approximate confidence intervals for 1,   and 2  can be 

found by taking 1 2
ˆ ˆˆ( , , )    to be bivariately normally 

distributed with mean 1 2( , , )    and covariance matrix  

1
0 1 2

ˆ ˆˆ( , , )I    . Thus, the  100(1 )%   approximate confidence 

intervals for 1,   and 2  are respectively, given by 

/2 11 /2
ˆˆ ,     ,  2,3,j ssZ v Z v s      

where  , 1,2,3ssv s    are the elements on the main diagonal of 

the covariance matrix 1
0 1 2

ˆ ˆˆ( , , )I     and 
2

z   is the percentile of 

the standard normal distribution with right-tail probability  
2l  . 

4 BAYESIAN ESTIMATIONS 

In this section, we provide the Bayes estimates of the 
unknown parameters and the corresponding credible 
intervals, when the common shape parameter   is known 
and when it is unknown. Based on the observed sample 
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1 : : 1 1( , , )m nx R  , ( 2 : : 2 2, ,m nx R  ),  ,( : : , ,m m n m mx R  ), 
the likelihood function  (5)  , is given by 

1 2
1 2 1 1 2 21 2( , , | ) ( , )exp ( ) ( , ) ,

m mmx x k x                 (16) 

where 

 
1

1 2

1 1

( , )  and ( , ) 1 log(1 ).
(1 )

m m

i
i i

ii i

x
x x R x

x





   



 

   


    (17) 

4.1 Bayesian Estimations When  is Known 

When the shape parameter   is known, the other shape 
parameters 1  and 2  have a conjugate gamma priors. It is 
assumed that the priors distribution of 1  and 2  are 
Gamma( 1 1,a b  ) and Gamma( 2 2,a b  ) and it has the pdfs 

1 1 11
1 1 1 1 11( | , )     if 0,

a ba b e    
                                    

(18)
 

and 
2 2 21

2 2 2 2 22( | , )     if 0.
a ba b e    
                                 

(19)
 

The gamma parameters  1a ,  1b ,  2a  and 2b are all assumed to 
be positive. When 1 1 0,a b   2 2 0a b  , we obtain the non-
informative priors of  1   and  2  . The joint posterior density 
of 1  and 2  based on the gamma priors is given by 

1 1 2 2 1 1 2 2 2 21 1 ( ( , )) ( ( , ))
1 2 1 2( , | ) .

m a m a b k x b k xx e e         
               

(20)
 

It is clear from Eq.  (20) that the posterior density functions of  

1   and  2   say  1 1( | )x    and  2 2( | )x   , respectively, are 
independent. Further, 1 1( | )x   is a gamma density with 
shape parameter ( 1 1m a ) and scale parameter 1 2( ( , ))b k x   
and  2 2( | )x   is the gamma density with shape parameter 

2 2( )m a  and scale parameter 2 2( ( , ))b k x   . Therefore, the 
Bayes estimates of  1   and  2   under SEL functions are 

1 1 2 2
1 2

1 2 2 2

     and     ,
( , ) ( , )

m a m a

b k x b k x
 

   

 
 

 
                                                          

(21)
 

respectively. Interestingly, for the non-informative priors

1 1 2 2 0a b a b    , the Bayes estimators coincide with the 

corresponding maximum likelihood estimators. 
The credible intervals for 1  and 2  can be obtained using the 

posterior distributions of 1  and 2 . Note that a posteriori:  

1 1 1 22 ( ( , ))Z b k x    and 2 2 2 22 ( ( , ))Z b k x     follow 2  

distributions with 1 12( )m a  and 2 22( )m a  degrees of 

freedom respectively, provided both 1 12( )m a  and 2 22( )m a   

are positive integers. Therefore,  100(1 )%   credible intervals 

for 1   and 2  are 
2 2 2 2

1 1 1 1 2 2 2 22 2 2 2
2( ),1 2( ), 2( ),1 2( ),

1 2 1 2 2 2 2 2

,  and , ,
2( ( , )) 2( ( , )) 2( ( , )) 2( ( , ))

m a m a m a m a

b k x b k x b k x b k x

      

       

     
   
   
      
   

respectively for 1 1( ) 0m a   and 2 2( ) 0.m a   Note that if 

1 12( )m a  and 2 22( )m a  are not integer values then gamma 

distribution can be used to construct the credible intervals. If 
no prior information is available, then non-informative priors 

can be used to compute the credible intervals for 1  and 2 . 

4.2 Bayesian Estimations When   is UnKnown 

In this subsection, we provide the Bayes estimators of the 

unknown parameters and the corresponding credible intervals 
when the common shape parameter   is unknown. In some 

situations where we do not have sufficient prior information, 
we can use non-informative prior distribution. This is 
particularly true for our study. For example, the non-
informative uniform prior distribution can be used for 

parameters ,  1  and 2 . The joint posterior density will 

then be in proportion to the likelihood function. 
Here we consider the more important case when the common 
shape parameter   is unknown and has the gamma prior 

with the pdf 
3

3 313
3 3 3

3

( | , )     if 0.
( )

a
a bb

a b e
a

    
 


                           
(22)

 

Combining the likelihood function (5) with the prior 

distributions, the joint posterior distribution for ,  1  and 2  

given data becomes: 
1 2 1 1 1 1 2 2 2 2 3 3 3

1 2

1 2 1 1 1 1 2 2 2 2 3 3 3 1 2
0 0 0

( | , , ) ( | , ) ( | , ) ( | , ).
, , 1 2

( | , , ) ( | , ) ( | , ) ( | , )

( , , | ) .
x a b a b a b

x a b a b a b d d d

x
        

  
           

   

  

  

  



  

   
(23)

 

Therefore, the Bayes estimate of any function of  , 1  and  

2  say 1 2( , , )g     , under SEL function is 

1 2

1 2 1 2 1 1 1 2 1 2 2 3 2 3 3 1 2
0 0 0

1 2 1 1 1 2 1 2 2 3 2 3 3 1 2
0 0 0

1 2 , , | 1 2

( , , ) ( | , , ) ( | , ) ( | , ) ( | , )

( | , , ) ( | , ) ( | , ) ( | , )

( , , ) ( ( , , ))

.

x

g x a b a b a b d d d

x a b a b a b d d d

g E g  

              

           

     

  

  

 

 




  

  

 
(24)

 

It is not possible to compute (24) analytically. Therefore, we 
propose the MCMC method to approximate (24). In this area 
we consider the MCMC method to generate samples from the 
posterior distributions and then compute the Bayes estimates 
of  , 1  and 2 under progressively first-failure censored 
competing risks data from Kumaraswamy distribution. A 
wide variety of MCMC schemes are available, and it can be 
difficult to choose among them. An important sub-class of 
MCMC methods are Gibbs sampling and more general 
Metropolis-within-Gibbs samplers; see, for example, [21]. 

In this section, we propose Gibbs sampling procedure to 
generate a sample from the posterior density function 

1 2, , 1 2( , , | )x       and in turn compute the Bayes estimates 

and also construct the corresponding credible intervals based 
on the generated posterior sample. In order to use the method 
of MCMC for estimating the parameters of the Kumaraswamy 

distribution, namely, 1,   and 2 . Let us consider 

independent priors (18), (19) and (22) for the parameters  

1 2,   and ,  respectively. The expression for the posterior 

can be obtained up to proportionality by multiplying the 
likelihood with the prior and this can be written as 

 
 
 

where  1(,X )  and  2( , )x    are defined in Eq. (17). The 

posterior is obviously complicated and no closed form 
inferences appear possible. We, therefore, propose to consider 
MCMC methods, namely the Gibbs sampler, to simulate 
samples from the posterior so that sample-based inferences 
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can be easily drawn. From (25), the full conditional posterior 

density of    is proportional to

 3 1
1 2 1 1 2 2 3( | , , ) ( , )exp ( ) ( , ) .

m a
x x k x b                         (26) 

Similarly, the full conditional posterior conditional 
distribution for 1  and 2  as the following 

1 1

1

1
1 2 1 1 21( | , , ) exp[ ( ( , ))],

m a
x b k x         

              (27) 
It can be seen that Eq. (27)  is a gamma density with shape 

parameter ( 1 1m a ) and scale parameter  1 2( ( , ))b k x   , Eq. 
(20)  is a gamma density with shape parameter ( 2 2m a ) and 
scale parameter 2 2( ( , ))b k x   and, therefore, samples of 1  
and 2  can be easily generated using any gamma generating 
routine. However, in our case, the conditional posterior 
distribution of   given 1  and 2  Eq. (26)  cannot be reduced 
analytically to well known distributions and therefore it is not 
possible to sample directly by standard methods. In this case, 
we need to use the M--H algorithm to generate from the 
distributions of  . We propose the following MCMC 
procedure. 

MCMC Algorithm: 
Step 1: Start with some initial guess of    , say  (0).   
Step 2: Set  1t  . 
Step 3: Generate ( )

1
t   from Gamma ( 1)

1 1 1 2( , ( , )).tm a b k x     
Step 4: Generate ( )

2
t from Gamma ( 1)

2 2 2 2( , ( , )).tm a b k x        
Step 5: Using Metropolis-Hastings (see, [22]), with a target 
distribution ( ) ( )

1 2( | , , )t t x      generate ( )t  with the 
proposal distribution N ( 1)( ,1)t  . 
Step 6: Compute ( )t , ( )

1
t  and ( )

2
t . 

Step 7: Set  1.t t    
Step 8: Repeat steps 3-6 N  times representing  

 [1] [2] [ ], ,..., ,N
t t t    1,2,3t   where ( 1 ,   2 1   and  

3 2).    
Step 9: Obtain the Bayes estimates with respect to the SEL 
function as 

[ ]

1

1
,  1,2,3

N
i

t t

i M

t
N M

 

 

 
                                          (29) 

where M  is burn-in and MSEs 

 
2

[ ]

1

1
MSE( ) , 1,2,3

N
i

t t t

i M

t
N M

  

 

  
                            (30) 

Step 10: To compute the credible intervals. Arrange all  

 [ ] [ 1] [ ], ,...,M M N
t t t     in an ascending order to obtain MCMC 

sample  (1) (2) ( ), ,..., ,N M
t t t     1,2,3t  .  Then the 100(1 2 )%   

symmetric credible intervals  t   given by 

( ( )) (1 ( )),  .N M N M
t t
     

 
                                                           (31) 

5 DATA ANALYSIS 

we consider in this section a real-life data set which was 
originally reported by [17] and latter analyzed by several 
authors, see for example [23],  [3] and [2]. It was obtained from 
a laboratory experiment in which male mice received a 
radiation dose of 300 roentgens. The cause of death for each 

mouse was determined by autopsy. Restricting the analysis to 
two causes of death, for the purpose of analysis, we consider 
reticulum cell sarcoma as cause 1 and combine the other 

causes of death as cause 2. There were 1 29n   deaths due to 

cause 1 and 1 39n   deaths due to cause 2.   68n   
observations remain in the analysis. 
The mean, median, standard deviation and the coefficient of 
skewness for the two causes of death are calculated as 
(344.034, 259, 170.568, 1.106) and (412.923, 431, 203.518, -0.227), 
respectively. For computational ease, we have divided each 
data point by 1000. 

Before progressing further we wish to examine the 
Kolmogorov Smirnov (K-S) statistic whether the 
Kumaraswamy model is suitable for this data. The maximum 
likelihood estimates of     and     based on the two causes of 
death are (1.984, 5.510) and (1.786, 3.474), respectively. In 
deaths due to cause 1 the K-S distance and the associated p-
value are 0.1934 and 0.2282, respectively, and for the deaths 
due to cause 2 the corresponding values are  0.0875 and 
0.9263.. Based on the p-values, the Kumaraswamy model is 
found to fit the data very well. We have plotted the empirical 
survival function, and the fitted survival functions in Fig. 1 
and Fig. 2 for both data sets. Observe that they fit the data 
very well. 

Now there were  68n    observations in the data. The data 
are randomly grouped into  34   groups with ( 2k   ) items 
withen each group. Now, we suppose that the pre-determined 
progressively first-failure-censoring scheme is given by ( 

1 2 2R R  , 3 4 12 1R R R    , 13 14 20R R R    ), then a 
progressively first-failure censored competing risks data of 
size 20 out of 34 groups of death time is obtained as 

(0.040,2), (0.042,2), (0.062,2), (0.158,1), (0.179,2), (0.195,1), 
(0.212,1), (0.222,2), (0.229,1), 0.244,1), (0.252,2), (0.259,1), 
(0.301,1), (0.333,2), (0.366,2), (0.407,2), (0.431,2), (0.482,2), 
(0.620,2), (0.761,2). 
 
 
 
 
 
 
 
 
 
 
 
 
 

There were 1 7m   deaths due to cause 1 and 2 13m   deaths 

due to cause 2. Based on the above progressively first-failure 
censored competing risks data, we obtain the ML estimate

 .
ML

 and 95%  confidence intervals with the corresponding 

lengths for parameters. The Bayes point estimates based on 

the MCMC   
_

.
Bayes MCMC

 and 95%  credible intervals with 

 

Fig. 1. The empirical and fitted survival functions for 
deaths due to cause 1.  
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the corresponding lengths for parameters are computed. We 
run the chain for 10000 times and discard the first 1000    
values as `burnin'. We used a non-informative prior 
distribution ( 0a b c d     ). The point estimates for 

different methods as well as  95%   confidence intervals and 

credible intervals with the corresponding lengths are 
presented in Table 1. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6 MONTE CARLO SIMULATIONS 

In this section, we report some numerical experiments 
performed to evaluate the behavior of the proposed methods. 
We simulated 1000 progressively first-failure censored 
competing risks samples from Kumaraswamy distribution. 
The samples were generated by using the algorithm described 
in [24]. We take into consideration that the progressively first-

failure censored order statistics  1 : : : 1 1, ,m n kX R R   

   2 : : : 2 2 : : :, , ,m n k m m n k m mX R X R  R R  is a 

progressively Type-II censored sample from a population with 

distribution function  1 (1 ( ))kF x   . For each data point, we 

assigned the cause of failure as 1 or 2 with probability 

1 1 2(( / ( )   ) and 2 1 2( / ( ))   , respectively. We used 

different sample sizes ,n  different effective sample sizes m , 

differen k  and the main patterns of various schemes that are 
considered in study are given as follows: 

(1)
: : :k m nS  All the removals are done at the first failure, i.e.  

1 , 0iR n m R    for 1.i    

 (2)
: : :k m nS  The removals are at middle observations, i.e.  

2

,mR n m   0iR   for 
2

.mi    

 (3)
: : :k m nS   The removals are at the last observation, i.e.  

, 0m iR n m R    for .i m   

We consider two cases separately to draw inference on 
parameters, namely: (i) known   and (ii) Unknown   

In first case we take  3,   1 1.5   and 2 0.5   and in the 

second case we used two sets of parameter values 3,   

1 1   and 2 0.5   and 2,   1 0.5   and 2 0.8.   

For the first case, (known    ), very small positive values of 

1 1 2, ,a b a  and  2b  can be used to construct the Bayes estimates 

or the corresponding credible intervals. We compute the 
average Bayes estimates (ABEs) with respect to squared error 
loss function, mean squared errors (MSEs), average 95%  

credible interval lengths (ACILs) and the corresponding 
coverage percentages (CPs). All the results are reported in 
Tables 2 and 3 . 
For the second case (Unknown   ) , in this case we consider 

informative prior for the unknown parameters namely (prior 

1: 1 3,a   1 1,b   2 2 2,a b   3 1,a   3 2b  ) and (prior 2:   1 4,a   

1 2,b   2 1,a   2 2,b   3 0.5,a   3 0.6b  ), for the two sets of 

parameter values. We have chosen the hyper-parameters in 
such a way that the prior mean became the expected value of 
the corresponding parameter. We compute the average 
maximum likelihood estimates (AMEs), mean squared errors 
(MSEs), average 95%  confidence interval lengths (ACILs) and 

the corresponding coverage percentages (CPs) of the 
parameters. Also, We compute the average Bayes estimates 
(ABEs) with respect to squared error loss function, mean 
squared errors (MSEs), average 95%  credible interval lengths 

(ACILs) and the corresponding coverage percentages (CPs) of 
the parameters based on 10000 MCMC samples and discard 
the first 1000 values as burn-in. The results are reported in 
Tables  2-7. 

TABLE 1 
POINT ESTIMATES, 95% CONFIDENCE AND CREDIBLE INTERVALS 

FOR THE PARAMETERS. 

 

 

Fig. 1. The empirical and fitted survival functions for 
deaths due to cause 2. 
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TABLE 4 
THE AMES, ABES OF  , 1   AND  2 AND THEIR MSES (WITHIN 

BRACKETS) WHEN Α IS UNKNOWN, FOR DIFFERENT CENSORING 

SCHEMES ARE REPORTED. 3  , 1 1.0    AND 2 0.5.   

 

TABLE 2 
THE ABES, ABES OF 1   AND  2 AND THEIR MSES (WITHIN 

BRACKETS) WHEN   IS UNKNOWN, FOR DIFFERENT CENSORING 

SCHEMES ARE REPORTED. 1 1.5    AND 2 0.5.   

 

TABLE 5 
THE 95% ACIL AND THE CORRESPONDING CPS (WITHIN 

BRACKETS) WHEN   IS UNKNOWN, FOR DIFFERENT CENSORING 

SCHEMES ARE REPORTED. 3  , 1 1.0  AND 2 0.5. 

 

TABLE 3 
THE 95% ACIL AND THE CORRESPONDING CPS (WITHIN 

BRACKETS) WHEN   IS KNOWN, FOR DIFFERENT CENSORING 

SCHEMES ARE REPORTED. 1 1.5  AND 2 0.5  . 
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7 CONCLUSIONS 

In this paper, we have analyzed progressive first-failure-
censoring in the presence of competing risks. In particular, we 
have assumed that the latent failure times under the 
competing risks follow independent Kumaraswamy 
distributions with the same one shape parameter and different 
other shape parameters. The maximum likelihood and Bayes 
methods are utilized to estimation the model parameters. 
Additionally, the two-sided confidence and credible interval 
lengths are computed. When the common shape parameter is 
known, the Bayes estimates of the other shape parameters 
have closed form expressions, but when the common shape 
parameter is unknown, the Bayes estimates do not have 
explicit expressions. In this case we propose to use MCMC 
samples to compute the Bayes estimates and the 
corresponding credible intervals. Based on the results of the 
simulation study some of the points are clear from this 
experiment. We observe the following: 

i) The results obtained in this paper can be specialized to: 
(a) first-failure-censored order statistics by taking  

(0, ,0)R  . (b) progressively Type-II censored statistics 

for 1k  . (c) usually Type-II censored order statistics for 
1k   and (0,..., )R n m  . (d) complete sample for  

1k  , n m  and (0, ,0)R   . 

ii) When the effective sample proportion ( :n m ) increases, 

the MSEs and the average probability interval lengths of 
parameters almost decrease in most cases. Also, the CPs 
in most cases are closed to the nominal level 0.95, (see 
Tables 2-7). 

iii) The MSEs and ACILs for the estimates of the parameters 
and for the proposed progressively first-failure censored 
competing risks ( 5k  ) are similar to those for 

progressively Type-II censored competing risks  ( 1k  ). 

iv) The censoring scheme (1)
: :k m nS  namely, ( 

( ,...,0)R n m   , in the sense for fixed n  and m ,  

n m   items are removed at the time of the first failure) 
is most efficient for all choices, it seems to usually 
provide the smallest MSEs for all estimators. 

v) From the results obtained in Tables 2-7. It can be seen 
that the the Bayes estimators perform better than the 
MLEs, in terms of both MSEs and the average lengths of 
the credible intervals. 
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