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Inference for a Progressively First-Failure
Censored Competing Risks Data from the
Kumaraswamy Distribution

A. A. Modhesh

Abstract— In medical studies or in reliability analysis, it is quite common that the failure of any individual or any item may be attributable to
more than one cause. Moreover, the observed data are progressively first-failure censored competing risks data, when the lifetime
distributions are Kumaraswamy. This type of censoring contains as special cases various types of censoring schemes used in the literature.
Based on this type of censoring, we derive the maximum likelihood estimators (MLE) of the unknown parameters and asymptotic confidence
intervals It is assumed that the latent cause of failures have independent Kumaraswamy distributions with the common shape parameter «,

but different shape parameters ﬂl and ,52 When the common shape parameter ¢ is known, the Bayes estimates of the another shape

parameters have closed form expressions and the corresponding credible intervals also can be constructed explicitly. As expected, when
the common shape parameter is unknown the explicit expressions of the Bayes estimators cannot be obtained. Hence, we propose Markov
chain Monte Carlo (MCMC) method to compute the Bayes estimates and construct the credible intervals of the unknown parameters. One
set of real data has been analyzed for illustrative purposes. Finally, we provide a Monte Carlo simulation to compare and select optimal

censoring schemes.

Index Terms— Kumaraswamy distribution; Progressive first-failure-censoring; Competing risks; Maximum likelihood method; MCMC

method; credible intervals.

1 INTRODUCTION

In reliability, medical or biological studies it is quite common
that more than one cause of failure may be present at the
same time. An investigator is often interested in the
assessment of a specific cause in the presence of other causes .
In the statistical literature this problem is known as the
competing risks model. A lifetime experiment with 7=2
different risk factors competing for the failure of the
experimental units is considered. The data for such a
competing risks model consist of the lifetime of the failed item
and an indicator variable which denotes the cause of failure.
In analyzing the competing risks model, it is assumed that
data consist of a failure time and an indicator denoting the
cause of failure. Severals studies have been carried out under
this assumption for both the parametric and the non-
parametric setups, namely the exponential, lognormal,
gamma, Weibull, generalized exponential or exponentiated
Weibull; see for example [1], [2] , [3] , [4] , [5] ,[6] and [7].
Recently, the competing risks model has received considerable
interest among the statisticians. See for example, [8] and [9].
E-mail: a_a_mod@yahoo.com Censoring occurs when exact lifetimes
are known only for a portion of the individuals or units under
study, while for the remainder of the lifetimes information on
them is partial. There are several types of censored tests. The
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most common censoring schemes are Type-I (time) censoring,
where the life testing experiment will be terminated at a
prescribed time T, and Type-II (failure) censoring, where the
life testing experiment will be terminated upon the r -th (r is
pre-fixed) failure. However, the conventional Type-I and
Type-1I censoring schemes do not have the flexibility of
allowing removal of units at points other than the terminal
point of the experiment, also when the lifetimes of products
are very high, the experimental time of a Type II censoring life
test can be still too long. Because of these lack of flexibilities,
Johnson [10] described a life test in which the experimenter
might decide to group the test units into several sets, each as
an assembly of test units, and then run all the test units
simultaneously until occurrence the first failure in each group.
Such a censoring scheme is called first-failure censoring. If an
experimenter desires to remove some sets of test units before
observing the first-failures in these sets this life test plan is
called a progressive first-failure-censoring scheme which
recently introduced by [11]. Readers may refer to [12], [13],
[14], [15] and [16] for extensive reviews of the literature on
progressive censoring.

The main aim of this paper is to develop a confidence interval
and the MLE for the Kumaraswamy distribution based on the
progressively first-failure-censored sample in the presence of
competing risks. Therefore, the organization of the paper is as
follows. In Section 2, we introduce the model and present the
notation used throughout this paper. The maximum
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likelihood estimates of the unknown parameters are
discussed, we also present the asymptotic confidence intervals
in Section 3. In Section 4, firstly, we discussed Bayes
estimation of the unknown parameters when the common
shape parameter ¢ is known and construction of credible
intervals. Secondly the Bayes estimation of the unknown
parameters when the common shape parameter « is
unknown and construction of credible intervals using MCMC
method. A real data set from [17] is analyzed in Section 5. In
section 6, the different methods are compared using Monte
Carlo simulations. Some concluding remarks are finally made
in Section 7.

2 MODEL ASSUMPTIONS AND NOTATION

Before proceeding any further, we describe different
notations we are going to use in this paper.
e X, lifetime of the i -th unit.

e X, lifetimeof the i -th individual under cause j , j =12 .

ij

e F(.) cumulative distribution function (cdf) of X; .

e  f(.) probability density function (pdf) of F(.) .

o Fj()cdfof Xy .

. fj(.) pdf of F; O -

e S;(.) survival function of Xj; .
6; () indicator variable denoting the cause of failure of the i -th
individual.

The model studied in the paper satisfies the following a

sumptions

1) When n independent groups with k items within each
group are put on a life test, R; groups and the group in
which the first failure is observed are randomly removed
from the test as soon as the first failure (say X . .«

and J; €{L,2} ) has occurred, R, groups and the group

in which the second first failure is observed are randomly
removed from the test when the second failure (say

X2 .0« and &, e{L,2} ) has occurred, and finally
Rm (M <n) groups and the group in which the m -th first
failure is observed are randomly removed from the test as
soon as the m -th failure (say X X. .. ., and

Sm €{L.2} ) has occurred. The (XX 1.1 - k.61 <

(XZR: m:n: k152)<---< (Xrﬁ:m n: kv5m) are called
progressively first-failure-censored competing risks order
statistics with the progressive censoring scheme
R=(R,R,,...R,) and foreach i, §; takes a value either

1 and 2 the causes of failures. It is clear that
n=m+R;+R, +..+ R, . To simplify the notation we will

use henceforth x; instead of X; ., ..y, i =L2+...+m.
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ii) The lifetime of unit is denoted as X , i =1,2+...+m . The
time at which the unit i fails due to cause j is x
j =12 .Thatis, X; =min{X,{,X;2}.

iif) The distribution of the random variable X;; is

ij

Kumaraswamy distribution with shape parameters « and
B, j =12 and i=12+...+m.Thatis, the (pdf) and (cdf)

of Xijr J =12,foreach i =1,2+...+m, are
fj(x):aﬂjx“‘l(l—xa)(ﬁrl), 0<x <1, (@>0, B; >0), 1)
F(x)=1-@-x“)", 0<x <L. )

The corresponding reliability and failure rate functions of this
distribution at some t , are given, respectively by

S;t)=@-t*)", o<t <1 3)
and

Hjt)=aft“  a-t*) ™ 0<t <1, (4)
iv) The two-parameters Kumaraswamy distribution is

unimodal for ¢>1 and g>1, uniantimodal for «<1 and
B <1, increasing for a>1 and pg<1, decreasing for o<1
and g>1 and constant for o= p=1. Jones [18] investigated
properties of the Kumaraswamy distribution and also
some similarities differences between the beta and
Kumaraswamy  distributions. = The Kumaraswamy
distribution is applicable to a number of hydrological
problems and many natural phenomena whose process
values are bounded on both sides. In hydrology and
related areas, the Kumaraswamy distribution has received
considerable interest, see Cordeiro et al. (2010, 2012).
Based on the above assumptions, the available data is a
progressively first-failure-censored competing risks sample

which  contains the  following:  (X;.pn.n:k.0uR1)
(XZ ‘m:n: kv§2rR2)v"'1(Xm Im:n: k|5vam)' where
Xl:m:n:k<X2:m:n:k<"’<xm:m:n:k denote the M

observed failure times, &;, J,, ---, O, denote the causes of

failures, and R; , R, , ---, R, denote the number of groups

the test at the
:k<'"<xm:m:n:k'

failure  times
If the failure

removed  from

X1:m:n:k<X2:m:n
times of the nxk items originally in the test are from a
continuous population with (cdf) F(x) and (pdf) f (x), the
joint  probability function  for

denSity X1R: m:n:k:»

X?:m:n:kr'"r >(r'r?:m:n:k isgivenby [11]‘

3 ESTIMATION OF THE PARAMETERS

In this section, we first estimate the parameters ¢ and pj,
j =12 by considering the maximum likelihood (ML)
methods, and then we compute the observed Fisher
information based on the likelihood equations. These will
enable us to develop pivotal quantities based on the limiting
normal distribution, the resulting pivotal quantities can be
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used to develop approximate confidence interval for the

parameters.
3.1 Maximum Likelihood Estimation
Based on the observed sample (X;...,..06LR)s
(X2 m:n:k02,R2), s ( Xm:m:n:k:OmRm )I the likelihood
function is;
m a-1
2(X; oc Xi
(,va:ﬂlrﬂz) a ﬂl 2 H(l Xa)

xexplk (B, + £,) ) (R; +1)log(L—x")].

©)

The log-likelihood function without the additive constant
can be written as follows;

m
L (i, 1, ) = mloga-+mylog f +mylog By + (=) log(x
i=1
m m
=Y logL-x{)+k (B + B) Y (R +DloglL-x{")
i=1 i=1 (6)
Upon differentiating (6) with respect to «, 8 and g,, and
equating each result to zero, three equations must be

simultaneously satisfied to obtain MLEs of the parameters
a, ﬂl and ﬂz Then, we have

oL(x;a,pi. o) _

Fy m +Zlog(x )+§ Iog(x

k (R; +1)x*log(x;)

(e oy KRUEDKE Toglxs)

ES D) @
5L(+ﬂlﬂﬂ) :%k;(a +Dlog(t-x) =0, ®)
and
aL(&g—/}fl’ﬁZ) r;§+kZ(R +D)log(L-x{*) =0. ®)

Thus, the MLE «, ﬂl and ﬂz of the parameter o, B and
B, can be obtained by solving the nonlinear likelihood Egs.

(7-9) using, for example, the Newton-Raphson iteration
scheme.

Notice that both- m; and m, follow binomial
distributions with sample size m. Hence,

m; ~Bin(m, By [ (B + o)), J=12 .

é Approximate interval estimation

The asymptotic normal distribution for the MLEs can be
obtained in the usual way. From the log-likelihood function in
(6), we have

L (B o) __m. x{ log?(x; )
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L@ fufo) _ L@ fifo) _ N~ (Ri +Dx{ log(x;) (11)
oadp, opoa ~ aex)r

(@B fBy) _ L@ fufo) _ "Z(R HOXI0gi) g9
0adp, opy0a arxH?

L, B Bo) _ %L, . Bo) _ (13)
8103 0,031 ’

(. fufr) _ My (14)
o2 B

and

OPL(a, B ) _ My

L@ pupr) My 15
0B B3 )

The Fisher information matrix | («a,f;,f,) is then obtained
by taking expectations of minus Eqs. (10-15). Under some mild
regularity conditions, (4,43,43,) is approximately bivariately
normal with mean (a,4,4,) and covariance matrix

e, B fp2) - In practice, we usually estimate | e, B B,) by

Y&, B, B,) - A simpler and equally valid procedure is to use
the approximation .

(@ A B)UN ((@ B o) 15" (@ B o)), wher 16%(@. 3, o)

is the observed information matrix

_ & Llm BB FLiag B & Ll §y.84)
a* :"ﬂéﬁ] E'EE.?_
Lon o oa FLllm BBy FLiaB,.f) F Ll B840
haprb)=- —Za 5 TR
&le BBy FLiaB, B Ll By, 4)
880a o808, :“,Eg

Approximate confidence intervals for «,f; and f, can be

found by taking (&, /4. /5)

distributed with mean (o,f,5,) and covariance matrix

to be bivariately normally

Iy Y, ,31, ,32). Thus, the 100(1-y)% approximate confidence

intervals for a,f; and f, are respectively, given by

a*Z o\, By =2l 5 =23

where Vg, =123 are the elements on the main diagonal of

§s
the covariance matrix |y Ya, [;’1, [;’2) and z, is the percentile of
2

the standard normal distribution with right-tail probability

oa’? a®  (1-x%)? 72 .
(R; +1)x % log?(x;)
K(A+h )Z a-x&y? 10 4 BAYESIAN ESTIMATIONS

(10) In this section, we provide the Bayes estimates of the
unknown parameters and the corresponding credible
intervals, when the common shape parameter o is known
and when it is unknown. Based on the observed sample
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(X1:m:n:00R) S (X2:imni02,R2 ), -
the likelihood function (5) , is given by

e, B Br 1 %) oc @™ B By 2y (. x ) exp[ K (B + Bo)mp (X @) |, (16)

where

'( Xm:m:nvévam )/

m
and 7, (a,x) = R: +1)logl—-x?%). (17
)Ha—.) n(e.x) le( Jlog(t-x{). (17)
4.1 Bayesian Estimations When « is Known
When the shape parameter o is known, the other shape
parameters f; and f, have a conjugate gamma priors. It is
assumed that the priors distribution of £ and f, are
Gamma( aj,b; ) and Gamma( a,,b, ) and it has the pdfs

(B lag by) o< g ™A if >0, as)
and
75(By |ag,by) o 2 e 2P if g, > 0. 19)

The gamma parameters a;, b;, a, and b, are all assumed to
be positive. When a =b; =0, a,=b, =0, we obtain the non-
informative priors of £, and g, . The joint posterior density
of p, and p, based on the gamma priors is given by

(ﬂl ﬂ2|X) m1+a1—1ﬁ£n +az‘1e Bi(by -k, (@, X))e =B, 0,k n, (@, X)) (20)

It is clear from Eq. (20) that the posterior density functions of
B and B, say m(Bilx) and 75(B,|X) , respectively, are
independent. Further, 7;(f|X) is a gamma density with
shape parameter (m; +3a;) and scale parameter (b; —k7,(,X))
and 7,(B,|x) is the gamma density with shape parameter
(m, +a,) and scale parameter (b, —k7,(c,X)) . Therefore, the
Bayes estimates of B and S, under SEL functions are

~ my + & ~ m, +a
B = 179 and S, = 22

by —k 7, (e, X) by —km,(a,X)
respectively. Interestingly, for the non-informative priors
a; =b; =a, =b, =0, the Bayes estimators coincide with the

(21)

corresponding maximum likelihood estimators.
The credible intervals for #; and f, can be obtained using the

posterior distributions of S, and f,. Note that a posteriori:

Zy=2p by —kn(a,x))and Z,=2p,(b,
distributions with 2(m; +&)

—k7,(a,x)) follow 2
and 2(m,+a,) degrees of
freedom respectively, provided both 2(m; +a;) and 2(m, +a,)
are positive integers. Therefore, 100(1-y)% credible intervals
for f; and p, are

2 2 2 2
Xo(m,+a) 1% Lom,+a).5 y 2y +a,) -2 Lo, +a,) s
20, —kmy(a.x)) 2(by —kmp(a. X)) 2(b; —kmy(a.x)) 2(b; —kmy(a.x))

respectively for (m;+a&)>0 and (m,+a,)>0. Note that if

2(my+&) and 2(m,+a,) are not integer values then gamma
distribution can be used to construct the credible intervals. If
no prior information is available, then non-informative priors
can be used to compute the credible intervals for £, and S,.
4.2 Bayesian Estimations When « is UnKnown

In this subsection, we provide the Bayes estimators of the
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unknown parameters and the corresponding credible intervals
when the common shape parameter « is unknown. In some
situations where we do not have sufficient prior information,
we can use non-informative prior distribution. This is
particularly true for our study. For example, the non-
informative uniform prior distribution can be used for
parameters «, f; and f,. The joint posterior density will

then be in proportion to the likelihood function.
Here we consider the more important case when the common
shape parameter ¢ is unknown and has the gamma prior
with the pdf

a

a® bz
( 3) £ if a>0. 22)

Combining the likelihood function (5) with the prior
distributions, the joint posterior distribution for ¢, f; and S,

73(ar]|ag,bg) 0 ——

given data becomes:
= B (a ﬂl /62 | X ) — ((xla, B By )xm (Bl by)x7y (B lag b
a,B.pr P A,

[T rkler B oy o by Bl g oyl b i

2)x75 (elag bs).

(23)

Therefore, the Bayes estimate of any function of «, B and
B> say 9(a, B, p>) , under SEL function is
G(a. B B2) =Eq g p1x (9 (. B, B2))
i favata s icia B gy )< alen by (Blag )y (Bl ba)dad pid 5, (24)
To 0o T et oy yxm (alow by (g oy s (Bl D) o i 5y

It is not possible to compute (24) analytically. Therefore, we
propose the MCMC method to approximate (24). In this area
we consider the MCMC method to generate samples from the
posterior distributions and then compute the Bayes estimates
of a, p and pB,under progressively first-failure censored
competing risks data from Kumaraswamy distribution. A
wide variety of MCMC schemes are available, and it can be
difficult to choose among them. An important sub-class of
MCMC methods are Gibbs sampling and more general
Metropolis-within-Gibbs samplers; see, for example, [21].

INn this section, we propose Gibbs sampling procedure to
generate a sample from the posterior density function

To 5.5, (@B B2 |X) and in turn compute the Bayes estimates

and also construct the corresponding credible intervals based
on the generated posterior sample. In order to use the method
of MCMC for estimating the parameters of the Kumaraswamy
distribution, namely, «,f and f,. Let us consider
independent priors (18), (19) and (22) for the parameters
P, P and «a, respectively. The expression for the posterior
can be obtained up to proportionality by multiplying the
likelihood with the prior and this can be written as

where ni(o,X) and 7,(a,X) are defined in Eq. (17). The

posterior is obviously complicated and no closed form
inferences appear possible. We, therefore, propose to consider
MCMC methods, namely the Gibbs sampler, to simulate
samples from the posterior so that sample-based inferences
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can be easily drawn. From (25), the full conditional posterior

density of € s proportional to

(@ | B Box) o a™ S (x, ) explK (B + o) (a,x) ~baar]. (26)

Similarly, the full conditional posterior conditional
distribution for £, and f, as the following

75 (Bl . B, x) o« B expl—,(by —k 1 (e, X)), (27)

It can be seen that Eq. (27) is a gamma density with shape
parameter (M, +a;) and scale parameter (b, —k#7,(a,x)) , Eq.
(20) is a gamma density with shape parameter (m, +a, ) and
scale parameter (b, —k7,(c,x)) and, therefore, samples of f;
and f, can be easily generated using any gamma generating
routine. However, in our case, the conditional posterior
distribution of & given f; and B, Eq. (26) cannot be reduced
analytically to well known distributions and therefore it is not
possible to sample directly by standard methods. In this case,
we need to use the M--H algorithm to generate from the
distributions of «. We propose the following MCMC
procedure.

MCMC Algorithm:

Step 1: Start with some initial guess of « , say a@.
Step 2: Set t =1.

Step 3: Generate Y from Gamma (my +a,by —kn, (P X))
Step 4: Generate ﬂzt) from Gamma (M, +a,,b, —k 7, (P X))
Step 5: Using Metropolis-Hastings (see, [22]), with a target
distribution 7, («| ﬂl(t), ﬂg),x) generate « Y with the
proposal distribution N (" Dy,

Step 6: Compute a®, ,Bl(t) and ,Bz(t) .

Step 7: Set t =t +1.
Stef 8:  Repeat
(¢}[]1¢{[2],___,¢[[N ),
$3= 1)

Step 9: Obtain the Bayes estimates with respect to the SEL
function as

times

(h=a,

steps 3-6 N
t=12,3 where

representing
$=p and

N

- 1 )

= [ t=123 2

h=gr 2 AL t=12 (29)
i=M +1

where M is burn-in and MSEs

MSE(4) = | i (d7-4) t=123 (30)
N-M =M +1 , -

Step 10: To compute the credible intervals. Arrange all
<¢[[M LM N ]) in an ascending order to obtain MCMC

sample (A®,d®,...4" ™), t=123. Then the 100(L-2)%
symmetric credible intervals ¢ given by

[ GO MY 0w ))J. (31)

5 DATA ANALYSIS

we consider in this section a real-life data set which was
originally reported by [17] and latter analyzed by several
authors, see for example [23], [3] and [2]. It was obtained from
a laboratory experiment in which male mice received a
radiation dose of 300 roentgens. The cause of death for each
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mouse was determined by autopsy. Restricting the analysis to
two causes of death, for the purpose of analysis, we consider
reticulum cell sarcoma as cause 1 and combine the other
causes of death as cause 2. There were n; =29 deaths due to

cause 1 and n;=39 deaths due to cause 2. n =68
observations remain in the analysis.

The mean, median, standard deviation and the coefficient of
skewness for the two causes of death are calculated as
(344.034, 259, 170.568, 1.106) and (412.923, 431, 203.518, -0.227),
respectively. For computational ease, we have divided each
data point by 1000.

Before progressing further we wish to examine the
Kolmogorov  Smirnov  (K-S) statistic  whether the
Kumaraswamy model is suitable for this data. The maximum
likelihood estimates of & and S based on the two causes of
death are (1.984, 5.510) and (1.786, 3.474), respectively. In
deaths due to cause 1 the K-S distance and the associated p-
value are 0.1934 and 0.2282, respectively, and for the deaths
due to cause 2 the corresponding values are 0.0875 and
0.9263.. Based on the p-values, the Kumaraswamy model is
found to fit the data very well. We have plotted the empirical
survival function, and the fitted survival functions in Fig. 1
and Fig. 2 for both data sets. Observe that they fit the data
very well.

Now there were n =68 observations in the data. The data
are randomly grouped into 34 groups with ( k =2 ) items
withen each group. Now, we suppose that the pre-determined
progressively first-failure-censoring scheme is given by (
Ri=R,=2, Rg=R,=--=Rpp=1, Riz=Ry, =-—-=Ry ), thena
progressively first-failure censored competing risks data of
size 20 out of 34 groups of death time is obtained as

(0.040,2), (0.042,2), (0.062,2), (0.158,1), (0.179,2), (0.195,1),
(0.212,1), (0.222,2), (0.229,1), 0.244,1), (0.252,2), (0.259,1),
(0.301,1), (0.333,2), (0.366,2), (0.407,2), (0.431,2), (0.482,2),
(0.620,2), (0.761,2).

1Lopf—/——7 T T T T e
™~ \—k Empirical survival function
(338 N ]
“E\
\\
0.6 I]Ll ™ — Fitted survival function b
<
— \\
0al Lo ]
’ SR
N
02 \ ]
T
<,
0.0 . ) ]
0.0 0.2 0.4 0.6 0.8
Fig. 1. The empirical and fitted survival functions for
deaths due to cause 1.

There were m; =7 deaths due to cause 1 and m, =13 deaths

due to cause 2. Based on the above progressively first-failure
censored competing risks data, we obtain the ML estimate

(.)ML and 95% confidence intervals with the corresponding

lengths for parameters. The Bayes point estimates based on

the MCMC (.)Bayes McMC and 95% credible intervals with
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the corresponding lengths for parameters are computed. We
run the chain for 10000 times and discard the first 1000
values as ‘burnin'. We used a non-informative prior
distribution ( a=b=c=d =0 ). The point estimates for
different methods as well as 95% confidence intervals and
credible intervals with the corresponding lengths are
presented in Table 1.

TABLE 1
POINT ESTIMATES, 95% CONFIDENCE AND CREDIBLE INTERVALS
FOR THE PARAMETERS.

Length

Method of Estimation Parameters Estimates Interval
(s o L6604 (l0sb 2003 1247
8, 0.7705  (0.0064, 1.5347)  1.5282
8, 14310 (02083, 2.6537)  2.4455
() 3ages atcnsc a 16179 (102422503 1.2263
- 9, 075 (0231720 14973
8, 14021 (05235, 20501) 24267

10F A-\_:l_\l T T T T =
~.
o8| ' .
Empirical survival function

osf At

\:"ht____, Fitted survival function

\\
04l o
AN
A
2 3,
02 1
e
_li.‘[_

0.0k - - L L . e 1]

LA 0.2 0.4 0.6 0E 10 12

Fig. 1. The empirical and fitted survival functions for
deaths due to cause 2.

6 MONTE CARLO SIMULATIONS

In this section, we report some numerical experiments
performed to evaluate the behavior of the proposed methods.
We simulated 1000 progressively first-failure censored
competing risks samples from Kumaraswamy distribution.
The samples were generated by using the algorithm described
in [24]. We take into consideration that the progressively first-

(le’: m:n :klé‘lle)<

(XZR:m:n:k’521R2)<"'<(Xr§:m:n:kvémRm) is a

failure censored order statistics
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progressively Type-II censored sample from a population with
distribution function 1-(1-F(x ))k . For each data point, we
assigned the cause of failure as 1 or 2 with probability

(B (B +po)) and (B /(B +f,)), respectively. We used
different sample sizes n, different effective sample sizes m,
differen k and the main patterns of various schemes that are
considered in study are given as follows:

Slgl): m - n. All the removals are done at the first failure, i.e.
Ri=n-m, R; =0 for i =1

2
S

Rn=n-m, R; =0 fori i%.
2

.n: The removals are at middle observations, i.e.

3
Sm

Rn=n-m, R; =0 for i #m.

,. The removals are at the last observation, i.e.

We consider two cases separately to draw inference on
parameters, namely: (i) known o and (ii) Unknown «

In first case we take « =3, f; =15 and S, =0.5 and in the
second case we used two sets of parameter values o =3,
pi=1and B, =05 and =2, £ =05 and S, =0.8.

For the first case, (known ¢ ), very small positive values of
a,bj, @, and b, can be used to construct the Bayes estimates

or the corresponding credible intervals. We compute the
average Bayes estimates (ABEs) with respect to squared error
loss function, mean squared errors (MSEs), average 95%
credible interval lengths (ACILs) and the corresponding
coverage percentages (CPs). All the results are reported in
Tables 2 and 3 .

For the second case (Unknown ¢, in this case we consider
informative prior for the unknown parameters namely (prior
1:a =3, b =1 ay=by=2, a3=1 by=2)and (prior2: a =4,
b,=2, a,=1 b,=2 a3=05 b;=0.6), for the two sets of
parameter values. We have chosen the hyper-parameters in
such a way that the prior mean became the expected value of
the corresponding parameter. We compute the average
maximum likelihood estimates (AMEs), mean squared errors
(MSEs), average 95% confidence interval lengths (ACILs) and
the corresponding coverage percentages (CPs) of the
parameters. Also, We compute the average Bayes estimates
(ABEs) with respect to squared error loss function, mean
squared errors (MSEs), average 95% credible interval lengths
(ACILs) and the corresponding coverage percentages (CPs) of
the parameters based on 10000 MCMC samples and discard
the first 1000 values as burn-in. The results are reported in
Tables 2-7.
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THE ABES, ABES OF £ AND S, AND THEIR MSES (WITHIN
BRACKETS) WHEN « IS UNKNOWN, FOR DIFFERENT CENSORING

TABLE 2

SCHEMES ARE REPORTED. £ =1.5 AND S, =0.5.

Scheme

R

B>

(1)
51.220;30
)
515030

1.6044(0.1925)
1.5878(0.2081)
1.5652(0.2110)
1.5551(0.1755)
1.6016(0.1953)
1.5817(0.1736)
1.5726(0.1869)
1.5648(0.1879)
1.5631(0.1774)
1.5410(0.1805)
1.5522(0.1654)
1.6205(0.2123)

0.5393(0.0573)
0.5041(0.0582)
0.5358(0.0649)
0.5207(0.0609)
0.5407(0.0634)
0.5387(0.0551)
0.5315(0.0573)
0.5434(0.0738)
0.5237(0.0533)
0.5286(0.0562)
0.5217(0.0557)
0.5267(0.0588)

TABLE 3
THE 95% ACIL AND THE CORRESPONDING CPS (WITHIN

TABLE 4
THE AMESs, ABESOF a3 AND f3, AND THEIR MSES (WITHIN
BRACKETS) WHEN A IS UNKNOWN, FOR DIFFERENT CENSORING
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SCHEMES ARE REPORTED. =3, =10 AND £, =0.5.

BRACKETS) WHEN ¢ IS KNOWN, FOR DIFFERENT CENSORING

SCHEMES ARE REPORTED. £ =1.5AND S, =0.5.

Scheme 81 B

S 050 1.6123(0.958) 0.9053(0.938)
52 5o 1.5848(0.934) 0.8626(0.924)
S 50 1.5769(0.946) 0.8962(0.938)
si . 1.5618(0.948) 0.8726(0.931)
52 0 1.6106(0.952) 0.9083(0.928)
s 0 1.5926(0.968) 0.9032(0.942)
S{ 50  1.5816(0.046) 0.8928(0.948)
5250 1.5787(0.944) 0.9007(0.928)
S8 50 1.5704(0.958) 0.8819(0.942)
S0 1.5526(0.944) 0.8815(0.931)
S0 1.5601(0.962) 0.8775(0.944)
S o 1.6223(0.938) 0.8959(0.942)

Scheme MLE (Bayes-MCMC)
& ) s & 1A B
S5 0.q0 20458 10774 05075 28881  1.0316 04891
(0.3607) (0.1240) (0.0593) (0.2273) (0.0644) (0.0323)
I 32455 11732  0.5965 30700  1.0637  0.5269
(0.5263) (0.1986) (0.1781) (0.2333) (0.0765) (0.0571)
I 3.0002 11273 0.5561 20542  1.0487  0.5111
(0.3501) (0.1114) (0.0782) (0.1738) (0.0399) (0.0363)
I 31261  1.0575  0.5584 3.0526  1.0150  0.5306
(0.4142) (0.1237) (0.0639) (0.2403) (0.0610) (0.0367)
583 a0 31435  1.0868  0.5306 2.0535  1.0321  0.5134
(0.3767) (0.1603) (0.0541) (0.2151) (0.0709) (0.0296)
5 o 30180 10674  0.5408 29304  1.0188  0.5136
(0.3956) (0.1381) (0.0667) (0.2113) (0.0614) (0.0345)
S 31626 12078  0.6081 3.0280  1.0696  0.5428
(0.3571) (0.2048) (0.0793) (0.1554) (0.0804) (0.0307)
518030 33160 14418  0.7416 30871 11277 0.5643
(0.4003) (0.7140) (0.2884) (0.0074) (0.0821) (0.0485)
5830 31077 13620  0.6576 2.0805  1.0670  0.5404
(0.3531) (0.7201) (0.2202) (0.0801) (0.0767) (0.0369)
st 0 31342 11597 06160 3028  1.0674 05631
(0.2458) (0.1935) (0.0938) (0.1231) (0.0729) (0.0411)
520 0 30778 12025  0.5818 29723  1.0783  0.5164
(0.2662) (0.3113) (0.1268) (0.1285) (0.0910) (0.0395)
580 31168 1.2331  0.6069 2.0881  1.0634  0.5277
(0.3220) (0.5274) (0.1159) (0.1077) (0.0789) (0.0289)
TABLE 5

THE 95% ACIL AND THE CORRESPONDING CPS (WITHIN
BRACKETS) WHEN @ IS UNKNOWN, FOR DIFFERENT CENSORING

SCHEMES ARE REPORTED. o =3, 3, =1.0AND £, =0.5.

Scheme MLE (Bayes-MCMC)
& N N a 3 N
S&:IQ)U 30 2.8122 1.4911 0.8985 2.3788 1.2196 0.7623
(0.924) (0973) (0.943) (0.986) (0.967) (0981)
Sf;u 30 29527 1.7792 1.1115 2.3990 1.3312 0.8421
(0.961) (0.960) (0.941) (0.980) (0.980) (0.938)
SS‘QJU 30 3.0902 1.8541 1.0998 24415 1.3823 0.8524
(0.943) (0.943) (0.952) (0.933) (0.945) (0.952)
SS&EU 40 2.3226 1.2695 0.7954 2.0788 1.0871 0.6936
(0.953) (0.955) (0.953) (0.964) (0.962) (0.956)
SE’;U 10 2.4399 1.3119 0.8010 2.1306 1.0893 0.6895
(0.989) (0971) (0938) (0.960) (0970) (0968)
Sggu 10 2.494 1.3728 0.8376 2.1593 1.1311 0.7113
(0.961) (0.962) (0.970) (0.944) (0.949) (0.966)
SC—E:IQJU 30 2 3668 2.3401 1.3348 1.8582 1.5631 0.9576
(0.961) (0.959) (0.963) (0.965) (0.963) (0.966)
Sg?zjn 30 2.3994  2.7066 1.7885 1.7956 1.7067 1.0222
(0.956) (0967) (0.961) (0.954) (0953) (0961)
SEE:SQJG 30 2.7003 3.195 1.9081 1.8473 1.7426 1.1296
(0.970) (0.974) (0.946) (0.972) (0.976) (0.966)
S:—E:lgu 40 1.9642 1.8407 1.106 1.6191 1.3747  0.8547
(0.960) (0.972) (0.968) (0.962) (0.958) (0.968)
SEE:Q:;u 40 1.8936 2.009 1.1074 1.5497 1.4202 0.8146
(0.936) (0.944) (0.935) (0.949) (0.975) (0.968)
SEE:S::}G 40 2.1436 2.4019 1.2928 1.6498 1.5127 0.8762
(0.973) (0.965) (0.962) (0.955) (0.971) (0.966)
IJSER © 2021

http://www.ijser.org



International Journal of Scientific & Engineering Research Volume 12, Issue 4, April-2021

ISSN 2229-5518

TABLE 6

THE AMES, ABESOF ¢ ff; AND S, AND THEIR MSES (WITHIN

BRACKETS) WHEN A IS UNKNOWN, FOR DIFFERENT CENSORING
SCHEMES ARE REPORTED. =2, ;=05 AND 3, =0.8.

Scheme MLE (Bayes-MCMC)
& B Ba & 3 2,
520 20091 05390 08268 19661 05161 08056
(0.2317) (0.0467) (00749)  (01228) (00272 (0.0523)
53030 20950 06035 08912 20007 05523 08399
(0.3817) (0.0097) (0.1240)  (0.1908) (0.0407) (0.0708)
5850 23190 06975 11410 21388 05982 09962
(0.4645) (0.1436) (04977)  (01642) (0.0496) (02011)
5040 20367  0.5080  0.8666 20006 04950  0.8481
(0.2124) (0.0384) (0.0739)  (0.1307) (0.0233) (0.0541)
%010 21728 0.5694 09222 20022 05418  0.8745
(0.3431) (00352) (01935)  (0.1870) (0.0204) (0.0961)
S s0 22445 05832 1.0222 21330 05351 09541
(0.3558) (0.0097) (02195)  (0.1607) (0.0387) (0.1059)
S 21626  0.7415  1.0139 20571 06007  0.9103
(0.1772) (04320) (02209)  (00672) (0.0725) (0.0742)
S s 29377 07735 1.2147 20032 05907 09819
(0.3000) (04587) (07824)  (01051) (0.0558) (01914)
S350 21956 06884 11358 20612 03503 00420
(02078) (01794) (06297)  (00649) (0.0283) (01321)
5040 21071 06273 09738 20438 05672  0.9049
(0.1921) (01193) (02491)  (01074) (0.0491) (01211)
520 20016 05976 09273 20391 03619 08868
(0.1081) (0.0603) (0.1588)  (0.0648) (0.0306) (0.0969)
S8 s 21703 07059 10869 20622 05981 09584

(0.1755) (0.1927) (0.3362) (0.0703) (0.0496) (0.1081)

TABLE 7
THE 95% ACIL AND THE CORRESPONDING CPS (WITHIN
BRACKETS) WHEN « IS UNKNOWN, FOR DIFFERENT CENSORING

SCHEMES ARE REPORTED. o =2, $=0.5AND $,=0.8.

Scheme MLE (Bayes-MCMC)
& 38, Ba & 5 8y
5T s 10012 085756 11506 169214 07508 1052
(0.945) (0.944) (0.927)  (0.956) (0.960) (0.963)
%030 10464 10268 13474 16451 08212 1.1501
(0.896) (0.948) (0.929) (0.943) (0.968) (0.966)
59230_30 2.2874 1.3433 1.9862 1.8123 09597 1.4816
(0.971) (0.967) (0.967) (0973) (0970) (0.967)
SS&}U-@ 1.6794 0.6911 0.9804 1.4876 06196 09048
(0.962) (0.943) (0.963) (0.967) (0.953) (0.963)
55?320.40 1.7059 0.795 1.1214 1.5093 06928 09978
(0.932) (0.931) (0.948)  (0.950) (0.048) (0.935)
53 . 18608 08891 13355 16010 07250 1.1363
(0.947) (0.962) (0.946)  (0.937) (0.962) (0.960)
SC—E:IQJO_SO 1.6357 1.5890 1.9957 1.3385 1.0268 1.5162
(0.942)  (0.040) (0.953)  (0.944) (0.963) (0.954)
s3. 16258 18112 26142 12086 1.0543 1.6522
(0.937) (0.964) (0.963) (0.943) (0.962) (0.954)
SEE?;O:SO 1.8738 1.8412 2.8941 1.3945 10817  1.7942
(0.971) (0.9763) (0.966) (0961) (0966) (0.966)
s 13527 10048 15671 11716 08496 1.2919
(0.960) (0.932) (0.968) (0.962) (0.948) (0.945)
S£?§0_40 1.2908 1.0465 1.5009 1.1324 08543 1.2936
(0.961) (0.965) (0.945)  (0.952) (0.954) (0.963)
58,0 14001 14631 21173 12051 09781 1.5386

(0.962) (0.973) (0.953) (0.955) (0.962) (0.970)
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7 CONCLUSIONS

In this paper, we have analyzed progressive first-failure-
censoring in the presence of competing risks. In particular, we
have assumed that the latent failure times under the
competing risks follow independent Kumaraswamy
distributions with the same one shape parameter and different
other shape parameters. The maximum likelihood and Bayes
methods are utilized to estimation the model parameters.
Additionally, the two-sided confidence and credible interval
lengths are computed. When the common shape parameter is
known, the Bayes estimates of the other shape parameters
have closed form expressions, but when the common shape
parameter is unknown, the Bayes estimates do not have
explicit expressions. In this case we propose to use MCMC
samples to compute the Bayes estimates and the
corresponding credible intervals. Based on the results of the
simulation study some of the points are clear from this
experiment. We observe the following:
i) The results obtained in this paper can be specialized to:
(a) first-failure-censored order statistics by taking
R =(0,--+,0) . (b) progressively Type-II censored statistics
for k =1. (c) usually Type-II censored order statistics for
k=1 and R=(0,..,.n—m). (d) complete sample for
k=1, n=m and R =(0,---,0) .
if) When the effective sample proportion (n:m) increases,
the MSEs and the average probability interval lengths of
parameters almost decrease in most cases. Also, the CPs
in most cases are closed to the nominal level 0.95, (see
Tables 2-7).
iif) The MSEs and ACILs for the estimates of the parameters
and for the proposed progressively first-failure censored
competing risks (k =5) are similar to those for
progressively Type-II censored competing risks (k =1).

Slgl) m:n
R=(n-m,...,0) , in the sense for fixed n and m,
n—m items are removed at the time of the first failure)
is most efficient for all choices, it seems to usually
provide the smallest MSEs for all estimators.

v) From the results obtained in Tables 2-7. It can be seen
that the the Bayes estimators perform better than the
MLEs, in terms of both MSEs and the average lengths of
the credible intervals.

iv) The censoring scheme namely, (
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